Package: mvMonitoring 0.2.4

mvMonitoring: Multi-State Adaptive Dynamic Principal Component Analysis for Multivariate Process Monitoring

Use multi-state splitting to apply Adaptive-Dynamic PCA (ADPCA) to data generated from a continuous-time multivariate industrial or natural process. Employ PCA-based dimension reduction to extract linear combinations of relevant features, reducing computational burdens. For a description of ADPCA, see <doi:10.1007/s00477-016-1246-2>, the 2016 paper from Kazor et al. The multi-state application of ADPCA is from a manuscript under current revision entitled "Multi-State Multivariate Statistical Process Control" by Odom, Newhart, Cath, and Hering, and is expected to appear in Q1 of 2018.

Authors:Melissa Innerst [aut], Gabriel Odom [aut, cre], Ben Barnard [aut], Karen Kazor [aut], Amanda Hering [aut]

mvMonitoring_0.2.4.tar.gz
mvMonitoring_0.2.4.zip(r-4.5)mvMonitoring_0.2.4.zip(r-4.4)mvMonitoring_0.2.4.zip(r-4.3)
mvMonitoring_0.2.4.tgz(r-4.4-any)mvMonitoring_0.2.4.tgz(r-4.3-any)
mvMonitoring_0.2.4.tar.gz(r-4.5-noble)mvMonitoring_0.2.4.tar.gz(r-4.4-noble)
mvMonitoring_0.2.4.tgz(r-4.4-emscripten)mvMonitoring_0.2.4.tgz(r-4.3-emscripten)
mvMonitoring.pdf |mvMonitoring.html
mvMonitoring/json (API)
NEWS

# Install 'mvMonitoring' in R:
install.packages('mvMonitoring', repos = c('https://gabrielodom.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/gabrielodom/mvmonitoring/issues

Datasets:

On CRAN:

5.24 score 4 stars 29 scripts 202 downloads 18 exports 24 dependencies

Last updated 1 years agofrom:1b081c8866. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winOKNov 22 2024
R-4.4-macOKNov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:dataStateSwitchfaultDetectfaultFilterfaultSwitchmspContributionPlotmspMonitormspProcessDatamspSPEPlotmspSubsetmspT2PlotmspTrainmspWarningpcaprocessMonitorprocessNOCdatarotate3DrotateScale3Dthreshold

Dependencies:cliDEoptimRdplyrfansigenericsgluelatticelazyevallifecyclemagrittrpillarpkgconfigplyrR6Rcpprlangrobustbasetibbletidyselectutf8vctrswithrxtszoo

Multivariate Statistical Process Control with mvMonitoring

Rendered fromMVSPC-Workflow.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2023-06-29
Started: 2017-07-04